If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + 2x + 3 = 0 Reorder the terms: 3 + 2x + 7x2 = 0 Solving 3 + 2x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.4285714286 + 0.2857142857x + x2 = 0 Move the constant term to the right: Add '-0.4285714286' to each side of the equation. 0.4285714286 + 0.2857142857x + -0.4285714286 + x2 = 0 + -0.4285714286 Reorder the terms: 0.4285714286 + -0.4285714286 + 0.2857142857x + x2 = 0 + -0.4285714286 Combine like terms: 0.4285714286 + -0.4285714286 = 0.0000000000 0.0000000000 + 0.2857142857x + x2 = 0 + -0.4285714286 0.2857142857x + x2 = 0 + -0.4285714286 Combine like terms: 0 + -0.4285714286 = -0.4285714286 0.2857142857x + x2 = -0.4285714286 The x term is 0.2857142857x. Take half its coefficient (0.1428571429). Square it (0.02040816328) and add it to both sides. Add '0.02040816328' to each side of the equation. 0.2857142857x + 0.02040816328 + x2 = -0.4285714286 + 0.02040816328 Reorder the terms: 0.02040816328 + 0.2857142857x + x2 = -0.4285714286 + 0.02040816328 Combine like terms: -0.4285714286 + 0.02040816328 = -0.40816326532 0.02040816328 + 0.2857142857x + x2 = -0.40816326532 Factor a perfect square on the left side: (x + 0.1428571429)(x + 0.1428571429) = -0.40816326532 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -2x+(-2)=-3x+(-6) | | 5x^2+41x+8=0 | | X+N=123 | | -16x^2+48x-20=0 | | x^2-13xy+42y^2=0 | | 50.868*3.14= | | 20+6x=-2x+26 | | 5x-10=1+1 | | x^2+13xy+42y^2=0 | | 32x-2x^3=0 | | B+2(b+5)=3(b-1)+13 | | p^2-8p+16=0 | | x^2+17x+31=0 | | 9s^2-16t^2= | | 4*3.14= | | 12-x-x^2=0 | | 14x^3+10x^2-7x^2-5x=0 | | 16v^2+24v+9= | | 6+n*25=50 | | 11y=-1+16y | | 30x^2+6x-5x-1=0 | | t(2t+1)= | | 13x-16=-3x | | (x+2)(x+4)= | | 5(g-3)+2=3(g+1) | | 16x^2-28x+28x-49=0 | | 5a-11=-1 | | 4+2n=10 | | (v-3)(v-3)= | | x^2+8x+7x+56=0 | | 18x^2+18x-317=0 | | 291*2= |